Biological Removal of the Mixed Pharmaceuticals: Diclofenac, Ibuprofen, and Sulfamethoxazole Using a Bacterial Consortium

Authors

  • Cherifa Beggah Department of Applied Microbiology and Food Sciences, Faculty of Nature and Life Sciences, University of Mohammed Seddik Benyahia- Jijel, 98 Ouled Aissa-Jijel 1800-Algeria, Algeria
  • Farida Benhamada Department of Applied Microbiology and Food Sciences, Faculty of Nature and Life Sciences, University of Mohammed Seddik Benyahia- Jijel, 98 Ouled Aissa-Jijel 1800-Algeria, Algeria
  • Houria Ouled-Haddar 1Laboratory of Molecular Toxicology, Faculty of Nature and life Sciences, University of Mohammed Seddik Benyahia - Jijel, 98 Ouled Aissa-Jijel 1800-Algeria, Algeria
  • Mohamed Sifour 1Laboratory of Molecular Toxicology, Faculty of Nature and life Sciences, University of Mohammed Seddik Benyahia - Jijel, 98 Ouled Aissa-Jijel 1800-Algeria, Algeria
  • Salima Aissaoui 1Laboratory of Molecular Toxicology, Faculty of Nature and life Sciences, University of Mohammed Seddik Benyahia - Jijel, 98 Ouled Aissa-Jijel 1800-Algeria, Algeria
Abstract:

Background: The presence of pharmaceuticals at low concentrations (ng to μg) in the environment has become a hot spot for researchers in the past decades due to the unknown environmental impact and the possible damages they might have to the plantae and fauna present in the aquatic systems, as well as to the other living organisms.Objectives: The aim of the present investigation was to develop a bacterial consortium isolated from diff erent origins to evaluate the ability of such a consortium to remove a mixture of pharmaceuticals in the batch system at lab scale, as well as assessment of its resistance to the other micropollutants present in the environment.Material and Methods: Using a closed bottle test, biodegradation of the mixed pharmaceuticals including Diclofenac (DCF), Ibuprofen (IBU), and Sulfamethoxazole (SMX) (at a concentration of 3 mg.L-1 of each drug) by the bacerial consortium was investigated. The test was carried out under metabolic (pharmaceutical was used as the sole source of carbon) and co-metabolic condition (in the presence of glucose). Finally, the ability of the bacterial consortium to resist other micropollutants like antibiotics and heavy metals was investigated.Results: Under the metabolic condition, the mixed bacteria (i.e., consortium) were able to metabolize 23.08% and 9.12% of IBU, and DCF at a concentration of 3 mg.L-1 of each drug, respectively. Whereas, in co-metabolic conditions, IBU was eliminated totally, in addition, 56% of the total concentration of DCF was removed, as well. In both metabolic and cometabolic conditions, removal of SMX was not observed. The selected bacteria were able to resist to most of the applied antibiotics and the used heavy metals, except mercury, where only one strain (S4) was resistant to the later heavy metal. Conclusion: Results suggest that the developed consortium might be an excellent candidate for the application in thebioremediation process for treating ecosystems contaminated with the pharmaceutical.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Biological Removal of phosphate from Synthetic Wastewater Using Bacterial Consortium

The biological phosphorus removal is a microbial process widely used for removing phosphorus fromwastewater to avoid eutrophication of water bodies. The study was aimed to screen the efficient phosphatereducing isolates and used to remove phosphate from synthetic wastewater using batch scale process. Thethree most efficient phosphate reducers were isolated and screened from eu...

full text

Model for the Treatment of Refinery Wastewater and expression of catabolic genes in Fluidized Bed Bioreactor using mixed bacterial consortium

This study was undertaken to evaluate a novel aerobic wastewater treatment model for the remediation of refinery effluents and to assess the removal efficiency of Bulkholderia cepacia strain AJI and Corynebacterium kutscheri strain AJ2 to clean oil waste from petrochemical company. Wastewater quality parameters including pH, BOD5, COD, TDS, OIL & GREASE, PHENOL concentration, TPH and THC were m...

full text

Model for the Treatment of Refinery Wastewater and expression of catabolic genes in Fluidized Bed Bioreactor using mixed bacterial consortium

This study was undertaken to evaluate a novel aerobic wastewater treatment model for the remediation of refinery effluents and to assess the removal efficiency of Bulkholderia cepacia strain AJI and Corynebacterium kutscheri strain AJ2 to clean oil waste from petrochemical company. Wastewater quality parameters including pH, BOD5, COD, TDS, OIL & GREASE, PHENOL concentration, TPH and THC were m...

full text

degradation of amoxicillin by bacterial consortium in a submerged biological aerated filter: volumetric removal modeling

background: amoxicillin is widely used as an antibiotic in the modern medicine. due to its chemical structure, polarity, activity level, antibiotic specifications, and environmental sustainability, amoxicillin leaks into the groundwater, surface waters, and drinking water wells. many physical and chemical methods have been suggested for removing amoxicillin from aquatic environments. however, t...

full text

on the relationship between using discourse markers and the quality of expository and argumentative academic writing of iranian english majors

the aim of the present study was to investigate the frequency and the type of discourse markers used in the argumentative and expository writings of iranian efl learners and the differences between these text features in the two essay genres. the study also aimed at examining the influence of the use of discourse markers on the participants’ writing quality. to this end the discourse markers us...

15 صفحه اول

Removal of Triphenylmethane Dyes by Bacterial Consortium

A new consortium of four bacterial isolates (Agrobacterium radiobacter; Bacillus spp.; Sphingomonas paucimobilis, and Aeromonas hydrophila)-(CM-4) was used to degrade and to decolorize triphenylmethane dyes. All bacteria were isolated from activated sludge extracted from a wastewater treatment station of a dyeing industry plant. Individual bacterial isolates exhibited a remarkable color-removal...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 15  issue 2

pages  135- 142

publication date 2017-04-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023